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Abstract: The conventional method for the color-matching process involves the compounding of
polymers with pigments and then preparing plaques by using injection molding before measuring
the color by an offline spectrophotometer. If the color fails to meet the L*, a*, and b* standards, the
color-matching process must be repeated. In this study, the aim is to develop a machine learning
model that is capable of predicting offline color using data from inline color measurements, thereby
significantly reducing the time that is required for the color-matching process. The inline color
data were measured using an inline process spectrophotometer, while the offline color data were
measured using a bench-top spectrophotometer. The results showed that the Bagging with Decision
Tree Regression and Random Forest Regression can predict the offline color data with aggregated
color differences (dE) of 10.87 and 10.75. Compared to other machine learning methods, Bagging
with Decision Tree Regression and Random Forest Regression excel due to their robustness, ability
to handle nonlinear relationships, and provision of insights into feature importance. This study
offers valuable guidance for achieving Bagging with Decision Tree Regression and Random Forest
Regression to correlate inline and offline color data, potentially reducing time and material waste in
color matching. Furthermore, it facilitates timely corrections in the event of color discrepancies being
observed via inline measurements.

Keywords: compounding; coloration; thermoplastic; machine learning; color prediction

1. Introduction

Color analysis stands as a crucial tool with a myriad of applications. Color analysis
plays a pivotal role in determining tolerances for automotive coatings, ensuring the ultimate
satisfaction of the end products. This becomes particularly crucial as automobiles are
composed of a diverse range of materials. It is essential to verify that the color coating
maintains a consistent and uniform appearance when applied to different materials with
varying textures [1]. Additionally, Ariño et al. explored the impact of a plastic texture on
color perception. Their conclusion highlighted the noteworthy influence that the texture of
plastic exerts on color perception [2].

To create a standard for color communication during color analysis, the International
Commission on Illumination (CIE) developed the CIE L* a* b* color space in 1976. The CIE
1976 L* a* b* color space is a three-dimensional, approximately uniform color space, pro-
duced by plotting in rectangular coordinates, L*, a*, and b* [3]. L* indicates lightness, a* is
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the red/green coordinate, and b* is the yellow/blue coordinate. The positive a* axis points
roughly towards red color stimuli, the negative axis points approximately towards green
stimuli, the positive b* axis points approximately towards yellow stimuli, and the negative
b* axis points approximately towards blue stimuli. L* is associated with the luminance of
the stimulus, making it a basic indicator of lightness [4]. The differences in L*, a *, and b*
between two specimens, which are also referred to as Delta Values, are calculated using
Equations (1)–(3).

∆L∗ = L∗
Sample − L∗

Standard (1)

∆a∗ = a∗Sample − a∗Standard (2)

∆b∗ = b∗Sample − b∗Standard (3)

Historically, the measurement of color has typically been carried out via offline color
measurements using offline bench-top spectrophotometers [5]. To achieve this, the materials
must undergo molding into plates after the extrusion process. However, the preparation
of samples for offline color measurement is a labor-intensive and time-consuming task,
resulting in delayed measurement reports. This delay carries a significant risk of producing
products that may not meet specifications during the waiting period [6].

An offline bench-top spectrophotometer serves as a specialized instrument, tailored
for conducting color measurements and analyses in a laboratory or controlled environment.
In contrast to inline spectrophotometers that are seamlessly integrated into production
lines for real-time polymer melt flow measurements, the offline bench-top variant excels in
delivering precise and accurate color measurements within a stationary setting.

The offline bench-top spectrophotometer incorporates a spherical interior. The design
strategically obstructs the light source, directing it from the color chip and reflecting it at
an 8-degree angle from the specimen. This configuration ensures that the reflected light
is effectively captured by the detector, enabling precise and accurate color measurements.
Two commonly employed measurement geometries in offline bench-top spectrophotome-
ters are SCI and SCE [7].

Specular Component Included (SCI): In SCI measurements, the spectrophotometer
captures all reflected light, including both specular and diffuse components. This effectively
eliminates the impact of specular reflection from the surface, allowing the measurement
to focus solely on color rather than appearance. As a result, SCI is universally adopted by
companies for formulating color recipes.

Specular Component Excluded (SCE): In SCE measurements, the spectrophotometer
selectively records only the diffuse reflection of light from the material’s surface, excluding
specular reflection. This approach incorporates the surface appearance into the measure-
ment. Consequently, SCE proves more valuable for quality control in the production
process, especially when a balance between color and appearance is crucial.

Figure 1 shows the working principle of an offline bench-top spectrophotometer with
(a) Specular Component Excluded geometry and (b) Specular Component Included geometry.
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Conversely, an inline color measurement involves conducting direct color measure-
ments on the polymer melt, which is already pigmented, preferably within the compound
extruder itself [5], by using an inline process spectrophotometer (IPS). This allows operators
to examine the polymer during production [8], and they are alerted as soon as the color
begins to deviate out-of-spec so that corrections can be made immediately to minimize
product rejects and wastage.

The IPS works by illuminating the molten polymer within the die using light from
the source at Angle 2, which travels through the fiber optics and a Reflection Polymer
Melt Probe (RPMP). The reflected signal from the polymer melt is then captured at Angle
1 and transported back to the IPS. [9] Angle 1 aims to closely approximate the sphere
measurement (commonly referred to as diffuse/8◦) of a bench-top spectrophotometer,
which is set at 8 degrees. However, owing to equipment constraints, the optimal angle
that it can attain is Angle 1. Figure 2 shows the working principle of the inline process
spectrophotometer.
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However, in previous research, it was observed that the scale of the colors of inline
and offline color measurements are distinctly different [10]. Specifically, the color change in
inline measurements is minimal, whereas it registers as significantly more pronounced in
offline measurements. This discrepancy emphasizes the need for refined approaches in han-
dling data from these two distinct measurement methods. Addressing this incongruity will
facilitate the prediction of the CIE L*, a*, and b* values for the output solid polymer based
on the inline color measurement, enabling corrections in case of any detected deviations
and averting the rejection of the entire production batch.

In recent times, there has been a discernible shift towards the application of machine
learning algorithms and artificial intelligence to model and optimize the relationship between
input and output variables. Illustrating this trend is Lee’s study, where an Artificial Neural
Network (ANN) was implemented. The ANN was specifically designed to predict product
properties such as mass, diameter, and height [11]. Shams-Nateri’s study also demonstrated
an application of Neural Networks to relate the color of fibers in the mentioned directions [12].
Jeon constructed machine learning models to predict the melting temperature after plasti-
cization [13]. Joo devised three models to predict the physical properties of PP composites,
employing three distinct machine learning (ML) methods: Multiple Linear Regression (MLR),
Deep Neural Network (DNN), and Random Forest (RF) [14].

The utilization of machine learning algorithms to develop predictive models from train-
ing data demonstrates significant potential for enhancing product quality and minimizing
waste and downtime in the polymer processing industries [15]. However, a common draw-
back that has been observed in many of the machine learning approaches and highlighted
in the literature is the opaque nature of these algorithms. Often, it becomes challenging to
discern the reasons behind the model’s accurate predictions, as they provide little insight
into the underlying process factors and relationships influencing the output [16].

The objective of this study is to design a machine learning model to predict the
offline color measurement data using the inline color measurement and material dosage as
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input parameters. To achieve this, Bagging with Decision Tree Regression, Deep Neural
Network, Multiple Linear Regression, and Random Forest Regression are used as the
machine learning model. The performance of the model will be evaluated using aggregated
dE, which is similar to the root mean square error (RMSE). The insights gained from this
study will facilitate the real-time monitoring and prediction of offline color data during
compounding through the utilization of inline color data. This approach enables timely
corrections to be implemented in the event of any detected deviations.

2. Materials and Methods
2.1. Materials

In this study, a compounding process, followed by an injection molding process,
was conducted to gather a well-diversified set of data for training the machine learning
models. The materials employed in this study include polycarbonate resin, dispersing
agent, and pigments. Polycarbonate (PC) (Makrolon® 2807) was supplied by Covestro,
Singapore. PC Makrolon 2807 has a density of 1.20 g/cm3 and a melt flow rate (MFR) of
10 g/10 min (measured at 300 ◦C/1.2 kg). Polycarbonate was chosen for its high usage in
engineering plastic manufacturing. Ethylene Bis Stearamide (EBS) L-205F dispersing agent
was supplied by DP Chemicals Pte Ltd., Singapore. Pigments, which included Tiona 288,
Raven 1010, Heliogen Green K8730, Ultramarine Blue 05, Solvent Yellow 114, and Plast Red
8355, were supplied by Hexachem (M) Sdn. Bhd, Selangor, Malaysia, and DP Chemicals
Pte Ltd., Singapore.

Formulations crafted for PC experiments are tabulated in Table 1. The components in
each formulation were first manually hand-tumbled to ensure uniformity before feeding
them into the extruder.

Table 1. Formulation of polycarbonate with different pigments to build the dataset.

Formulation
PC

Makrolon
2807

EBS
L-205F

Tiona
288 Raven 1010

Heliogen
Green K

8730

Ultramarine
Blue 05

Solvent
Yellow 114

Plast Red
8355

1 100 0 0 0 0 0 0 0
2 99.65 0.3 0.05 0 0 0 0 0
3 99.6 0.3 0.1 0 0 0 0 0
4 99.45 0.3 0.25 0 0 0 0 0
5 99.2 0.3 0.5 0 0 0 0 0
6 98.7 0.3 1 0 0 0 0 0
7 97.7 0.3 2 0 0 0 0 0
8 96.7 0.3 3 0 0 0 0 0
9 94.7 0.3 5 0 0 0 0 0

10 98.7 0.3 0.999 0.001 0 0 0 0
11 98.7 0.3 0.995 0.005 0 0 0 0
12 98.7 0.3 0.99 0.01 0 0 0 0
13 98.7 0.3 0.96 0.04 0 0 0 0
14 98.7 0.3 0.7 0.3 0 0 0 0
15 98.7 0.3 0.5 0.5 0 0 0 0
16 99.69 0.3 0 0 0.01 0 0 0
17 99.68 0.3 0 0 0.02 0 0 0
18 99.65 0.3 0 0 0.05 0 0 0
19 99.6 0.3 0 0 0.1 0 0 0
20 99.5 0.3 0 0 0.2 0 0 0
21 99.3 0.3 0 0 0.4 0 0 0
22 99.1 0.3 0 0 0.6 0 0 0
23 98.7 0.3 0 0 1 0 0 0
24 99.69 0.3 0 0.01 0 0 0 0
25 99.68 0.3 0 0.02 0 0 0 0
26 99.65 0.3 0 0.05 0 0 0 0
27 99.6 0.3 0 0.1 0 0 0 0
28 99.5 0.3 0 0.2 0 0 0 0
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Table 1. Cont.

Formulation
PC

Makrolon
2807

EBS
L-205F

Tiona
288 Raven 1010

Heliogen
Green K

8730

Ultramarine
Blue 05

Solvent
Yellow 114

Plast Red
8355

29 99.3 0.3 0 0.4 0 0 0 0
30 99.1 0.3 0 0.6 0 0 0 0
31 98.7 0.3 0 1 0 0 0 0
32 99.69 0.3 0 0 0 0.01 0 0
33 99.68 0.3 0 0 0 0.02 0 0
34 99.65 0.3 0 0 0 0.05 0 0
35 99.6 0.3 0 0 0 0.1 0 0
36 99.5 0.3 0 0 0 0.2 0 0
37 99.3 0.3 0 0 0 0.4 0 0
38 99.1 0.3 0 0 0 0.6 0 0
39 98.7 0.3 0 0 0 1 0 0
40 99.69 0.3 0 0 0 0 0.01 0
41 99.68 0.3 0 0 0 0 0.02 0
42 99.65 0.3 0 0 0 0 0.05 0
43 99.6 0.3 0 0 0 0 0.1 0
44 99.5 0.3 0 0 0 0 0.2 0
45 99.3 0.3 0 0 0 0 0.4 0
46 99.1 0.3 0 0 0 0 0.6 0
47 98.7 0.3 0 0 0 0 1 0
48 98.7 0.3 0.95 0 0 0 0.05 0
49 98.7 0.3 0.9 0 0 0 0.1 0
50 98.7 0.3 0.7 0 0 0 0.3 0
51 98.7 0.3 0.5 0 0 0 0.5 0
52 98.7 0.3 0.48 0.02 0 0 0.5 0
53 98.7 0.3 0 0.025 0 0 0.975 0
54 98.7 0.3 0 0.05 0 0 0.95 0
55 98.7 0.3 0.95 0 0 0.05 0 0
56 98.7 0.3 0.9 0 0 0.1 0 0
57 98.7 0.3 0.7 0 0 0.3 0 0
58 98.7 0.3 0.5 0 0 0.5 0 0
59 98.7 0.3 0.48 0.02 0 0.5 0 0
60 98.7 0.3 0 0.025 0 0.975 0 0
61 98.7 0.3 0 0.05 0 0.95 0 0
62 98.7 0.3 0.95 0 0 0.05 0 0
63 98.7 0.3 0.9 0 0 0.1 0 0
64 98.7 0.3 0.7 0 0 0.3 0 0
65 98.7 0.3 0.5 0 0 0.5 0 0
66 98.7 0.3 0.48 0.02 0 0.5 0 0
67 98.7 0.3 0 0.025 0 0.975 0 0
68 98.7 0.3 0 0.05 0 0.95 0 0
69 99.69 0.3 0 0 0 0 0 0.01
70 99.68 0.3 0 0 0 0 0 0.02
71 99.65 0.3 0 0 0 0 0 0.05
72 99.6 0.3 0 0 0 0 0 0.1
73 99.5 0.3 0 0 0 0 0 0.2
74 99.3 0.3 0 0 0 0 0 0.4
75 99.1 0.3 0 0 0 0 0 0.6
76 98.7 0.3 0 0 0 0 0 1
77 98.7 0.3 0.95 0 0 0 0 0.05
78 98.7 0.3 0.9 0 0 0 0 0.1
79 98.7 0.3 0.7 0 0 0 0 0.3
80 98.7 0.3 0.5 0 0 0 0 0.5
81 98.7 0.3 0.48 0.02 0 0 0 0.5
82 98.7 0.3 0 0.025 0 0 0 0.975
83 98.7 0.3 0 0.05 0 0 0 0.95
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2.2. Compounding Equipment

Compounding was performed by using an intermeshing co-rotating twin screw ex-
truder (Coperion GmbH, Stuttgart, Germany). It has a 26 mm screw diameter, an L-to-D
ratio of 44, is powered by a 27-kW motor, and features 11 heating zones for the barrel along
with one for the die. The barrel temperatures were set at 260–280 ◦C for PC, with a screw
speed of 230 rpm. Upon exiting the die, the extrudate was quenched in cold water, dried
using air, and then converted into pellets via a pelletizer. The pellets were then molded
via injection molding (Sumitomo C250, Singapore) with a clamp tonnage of 100 tons into a
cuboid color chip (95 mm by 55 mm by 2 mm), as shown in Figure 3. The dimension of
the color chip was selected based on the industrial standard in the polymer compounding
industry. The injection barrel temperature was set at 260–280 ◦C at an injection speed of
120 mm/s, with mold temperatures of 100 ◦C. The specimen was conditioned at 23 ± 2 ◦C
for 24 h before color measurements.
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2.3. Color Measurement

In our experiment, the color measurement of the polymer melt was conducted using
Equitech’s EQUISPEC™ Inline Process Spectrophotometer (IPS) (Equitech, Charlotte, NC,
USA), along with a Reflection Polymer Melt Probe (RPMP). The RPMP was mounted at the
die head of the extruder and ensured that there was ample shear force to consistently cause
the new polymer melt to shear across the RPMP.

The data acquisition rate of the color measurement of polymer melts was set at every
2 s. The CIE L* a* b* color reading [3] from the spectrophotometer was recorded as the
inline measurement by using D65 as the standard illuminant [17] and a standard observer
angle of 10 degrees. IPS has a measurement uncertainty of 0.01 unit for CIE L* a* b* color
reading. The mean data were only collected after 5 min when the reading is stabilized and
shown in Table A1. The measurement period was 5 min.

For offline color measurement, we used an X-Rite Ci7800 bench-top Spectrophotome-
ter [18] (X-Rite—Southeast Asia and Pacific, Singapore) with a 400 mm UV filter, equipped
with Color iMatch professional software (Version 10.7.2). A 10◦ supplementary standard
observer and D65 illuminant [17] were used, coupled with SCI mode. Given that the surface
texture can induce diffusion and scattering of light, influencing color appearance [19], the
SCI mode was exclusively preferred for assessing color rather than appearance. The CIE L*
a* b* color readings from the spectrophotometer were documented as offline measurements.
The bench-top spectrophotometer used in this study has a measurement uncertainty of
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0.01 unit for CIE L* a* b*. The mean data were calculated based on the average reading of
10 pieces of color chips for each dosage and shown in Table A1.

3. Machine Learning Architectures

In this paper, four machine learning models were employed for predictions: Bagging
with Decision Tree Regression, Deep Neural Network, Multiple Linear Regression, and
Random Forest Regression.

3.1. Bagging with Decision Tree Regression

The Bagging with Decision Tree Regression model is a combination of Bagging Regres-
sion and Decision Tree Regression.

A Decision Tree Regression is a predictive model that maps features of an input to
make decisions or predictions [20]. In the context of regression, it is used to predict a
continuous outcome based on input features [21]. The tree structure consists of nodes rep-
resenting decisions based on features and leaves representing the predicted outcomes [22].
Figure 4 shows an example of the Decision Tree Regression that was generated in this
study. The decision tree starts with a root condition of Solvent Yellow 114 with a dosage
under 0.005, where it best splits the data to minimize the mean squared error (MSE). It then
creates a condition for splitting the data, aiming to reduce the variance in the predicted
values which is inline a* ≤ 3.78 and Raven 1010 ≤ 0.013. The recursive splitting process
continues, forming a binary tree structure. The goal is to iteratively partition the data into
subsets that exhibit lower variance in the target variable. As the tree grows, leaf nodes
contain the predicted values for the target variable, which might be the mean or median of
the target values in the leaf. During the prediction phase, a new data point traverses the
tree, following the path of decisions until it reaches a leaf node. The predicted value is then
determined by the value that is associated with that leaf.
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Bagging Regression is an ensemble learning technique that involves training multiple
decision trees with different feature orders [23]. Figure 5 shows the working principle
of Bagging Regression. In this process, features are randomly selected and arranged to
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create decision trees. This is repeated multiple times (1000 times in this paper), resulting
in a collection of diverse decision trees. When making predictions for new data, the
Bagging Regression aggregates the outputs of these individual trees, often by averaging, to
provide a more robust and generalized prediction. The randomness introduced in feature
selection and ordering helps reduce overfitting, making the model more effective and
resilient. The parameters for Bagging with Decision Tree Regression used in this paper are
summarized in Table 2.
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Table 2. Machine learning model architecture of Bagging with Decision Tree Regression.

Parameter Value

Random state for Decision Tree Regression 42
Number of base estimators 1000

Random state for Bagging Regression 42
Number of parallel jobs −1

3.2. Deep Neural Network

A Deep Neural Network makes predictions through a process called forward propaga-
tion, which involves passing the input data through the network’s layers of interconnected
neurons. Figure 6 shows the working principle of the Deep Neural Network. In this paper,
the network is trained for 50 epochs, with each epoch processing batches of 32 samples
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at a time, considering the small sample size. The Deep Neural Network comprises three
layers: an input layer with 128 neurons using Rectified Linear Unit (ReLU) activation, a
hidden layer with 64 neurons and ReLU activation, and an output layer with three neurons
corresponding to the targets (offline L*, a*, b*). The network is compiled using the Adam
optimizer and the mean squared error loss function, commonly chosen for regression
problems. Once trained, the Deep Neural Network is utilized to make predictions on
new dataset features. The parameters for the Deep Neural Network in this paper are
summarized in Table 3.
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Table 3. Machine learning model architecture of Deep Neural Networks.

Parameter Value

Number of hidden layers 2
Number of input layer neurons 11

Number of hidden layer neurons 192
Number of output layer neurons 3
Hidden layer activation function Relu

Optimizer Adam
Loss function RMSE

Training iterations (epochs) 50
Batch size 32

3.3. Multiple Linear Regression

Multiple Linear Regression makes predictions by combining the weighted sum of
multiple input features with a constant term. In our paper, the input features are the
material dosage and inline L* a* b*. The model learns these weights during training to
minimize the difference between its predictions and the actual target values, allowing it
to generalize and make accurate predictions on new data by considering multiple input
features simultaneously. The parameters for Multiple Linear Regression in this paper are
summarized in Table 4.
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Table 4. Machine learning model architecture of Multiple Linear Regression.

Parameter Value

fit_intercept True
Normalize False

Copy_X True
Number of jobs None

3.4. Random Forest Regression

Random Forest Regression, an ensemble learning technique, refines Bagging principles
by introducing more randomization into the construction of individual decision trees. In
contrast to Bagging with a Decision Tree Regression, Random Forest Regression selects
only a random subset of features, not all, for splitting a node. This deliberate feature subset
randomness aims to decrease correlations between trees, enhancing the overall robustness.
However, it may potentially miss crucial features. The working principle of Random Forest
Regression is illustrated in Figure 7, where a subset of features is randomly chosen for each
tree’s training. This process is iterated 1000 times. When given new data, the Random Forest
Regression aggregates outputs from individual trees to provide a more robust prediction.
The parameters for Random Forest Regression in this paper are summarized in Table 5.

Polymers 2024, 16, x FOR PEER REVIEW 10 of 19 
 

 

Table 4. Machine learning model architecture of Multiple Linear Regression. 

Parameter Value 
fit_intercept True 
Normalize False 

Copy_X True 
Number of jobs None 

3.4. Random Forest Regression 
Random Forest Regression, an ensemble learning technique, refines Bagging principles 

by introducing more randomization into the construction of individual decision trees. In 
contrast to Bagging with a Decision Tree Regression, Random Forest Regression selects only 
a random subset of features, not all, for splitting a node. This deliberate feature subset ran-
domness aims to decrease correlations between trees, enhancing the overall robustness. 
However, it may potentially miss crucial features. The working principle of Random Forest 
Regression is illustrated in Figure 7, where a subset of features is randomly chosen for each 
tree’s training. This process is iterated 1000 times. When given new data, the Random Forest 
Regression aggregates outputs from individual trees to provide a more robust prediction. 
The parameters for Random Forest Regression in this paper are summarized in Table 5. 

Table 5. Machine learning model architecture of Random Forest. 

Parameter Value 
Random state for Random Forest 42 

Number of base estimators 1000 

 
Figure 7. Working principle of Random Forest. Figure 7. Working principle of Random Forest.

Table 5. Machine learning model architecture of Random Forest.

Parameter Value

Random state for Random Forest 42
Number of base estimators 1000
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4. Machine Learning Methodology
4.1. Data Exploration through the Pearson Correlation Coefficient

To enhance prediction accuracy, understanding the linear relationship between
features—material dosage and inline color data and the target variables—and offline
color data is crucial. The Pearson correlation coefficient (PCC) was employed for this
purpose. The PCC measures the strength and direction of the linear relationship between
two variables. The PCC was computed using Equation (4).

r =
∑
(
Xi − X

)(
Yi − Y

)√
∑
(
Xi − X

)2·∑
(
Yi − Y

)2
(4)

where Xi and Yi are individual data points of the variables X and Y, and X and Y are the
means of variables X and Y, respectively.

This analysis was primarily undertaken to identify any linear relationships and the
necessity of data augmentation for improved model performance. Moreover, the statistical
significance of these correlations was assessed to ensure that the observed relationship is
not due to random chance but reflects a genuine association in the data.

Table 6 illustrates the correlations between each material and the offline a* value. It is
evident that materials that are strongly correlated with the offline a* value include the
red pigment, indicating a positive linear relationship, and the blue pigment, indicating
a negative linear relationship. This discovery piques interest, given that the a* value
is typically impacted by the dosage of both red and green pigments. Nevertheless, the
difference in correlation coefficients between green and blue pigments is not considerable.
Therefore, it is reasonable to propose that the blue pigment tends to exhibit a greenish tone.

Table 6. Pearson correlation coefficients between chemical components and offline a* value.

Chemical Component Offline Color Data Pearson Correlation Coefficient

Plast Red 8355 Offline a* value 0.355185
Solvent Yellow 114 Offline a* value 0.119745

EBS L-205F Offline a* value 0.021655
PC Makrolon 2807 Offline a* value 0.001232

Raven 1010 Offline a* value −0.048207
Tiona 288 Offline a* value −0.074003

Heliogen Green K 8730 Offline a* value −0.097658
Ultramarine Blue 05 Offline a* value −0.106822

Table 7 illustrates the correlations between each material and the offline b* value.
The yellow pigment (revealing a positive linear relationship) and blue pigment (revealing a
negative linear relationship) exhibit strong correlations with the b* value. This aligns with
the CIE L* a* b* color space, where the yellow pigment contributes a positive b* value, and
the blue pigment contributes a negative b* value.

Table 7. Pearson correlation coefficients between chemical components and offline b* value.

Chemical Component Offline Color Data Pearson Correlation Coefficient

Solvent Yellow 114 Offline b* value 0.3597
PC Makrolon 2807 Offline b* value 0.105443

Plast Red 8355 Offline b* value 0.047905
EBS L-205F Offline b* value 0.012755
Tiona 288 Offline b* value −0.059283

Heliogen Green K 8730 Offline b* value −0.074992
Raven 1010 Offline b* value −0.102322

Ultramarine Blue 05 Offline b* value −0.359825
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Table 8 presents the correlations between each material and the offline L* value.
The results show that the white pigment (indicating a positive linear relationship), as well
as the blue and black pigments (indicating a negative linear relationship), demonstrate
strong correlations with the L* value. The positive association with the L* value aligns with
the CIE L* a* b* color space, where the white pigment contributes to a positive L* value.

Table 8. Pearson correlation coefficients between chemical components and offline L* value.

Chemical Component Offline Color Data Pearson Correlation Coefficient

Tiona 288 Offline L* 0.447425
Solvent Yellow 114 Offline L* −0.008293
PC Makrolon 2807 Offline L* −0.130144

EBS L-205F Offline L* −0.162846
Plast Red 8355 Offline L* −0.225973

Heliogen Green K 8730 Offline L* −0.23764
Ultramarine Blue 05 Offline L* −0.354951

Raven 1010 Offline L* −0.359394

It is noteworthy that, apart from the black pigment, the blue pigment also significantly
contributes to the negative L* value. This observation suggests that the blue pigment could
serve as an alternative to the black pigment in contributing to a negative L* value.

Table 9 displays the correlations between the inline and offline color data, revealing
robust associations between the two. The results show that strong correlations between
inline and offline color data affirm the potential of inline color data to predict offline color
characteristics. These correlations between material dosage, inline L* a* b*, and offline
L* a* b* values are critical for identifying relevant features in model training, guiding the
approach towards more precise and reliable color prediction.

Table 9. Pearson correlation coefficients between inline and offline color data.

Inline Color Data Offline Color Data Pearson Correlation
Coefficient

Inline L* Offline L* 0.583606
Inline a* Offline a* 0.576646
Inline b* Offline b* 0.522276

In summary, these findings not only demonstrate significant linear relationships be-
tween the chemical components and color data but also adhere to the established principles
of the CIE L* a* b* color space. This enhances the understanding of how different materials
influence color properties, which is vital for developing more accurate machine learning
models for color prediction.

4.2. Dataset Allocation

Out of the complete dataset that was generated from the color measurement, which
comprises 83 color formulations as presented in Table 1, 74 datasets were designated
for training, and the remaining 9 datasets were for testing to assess model performance.
The order of the data was randomized before splitting to reduce overfitting and improve
the generalization of the data.

Each dataset comprises 11 features and 3 target variables, as illustrated in Figure 8.
The features are categorized into two groups: the dosage of each material and inline L* a*
b*. The target variables include offline L* a* b* values. These datasets will be employed for
model training and performance evaluation.
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4.3. Evaluation Metric

The performance of each model was assessed using the aggregated dE, a domain-
specific RMSE. RMSE is defined as the standard metric in regression analysis that measures
the average magnitude of the errors between predicted and actual values. An aggregated
dE gauges the average color difference between predicted and actual values of the test
dataset, calculated using Equation (5). Equation (6) shows the equation for calculating
RMSE. Lower dE values signify greater accuracy in the model prediction.

Aggregated dE* =

√√√√ n

∑
i=1

(L̂∗
i − L∗

i )
2
+ (â∗i − a∗i )

2
+ (b̂

∗
i − b∗i )

2

n
(5)

L̂∗
1 , L̂∗

2 ,. . ., L̂∗
n, are predicted L* values, and L∗

1 , L∗
2 ,. . . L∗

n are actual L* values.
â∗1 , â∗2 ,. . ., a∗n, are predicted a* values, and a∗1 , a∗2 ,. . . a are actual a* values.
b̂∗1 , b̂∗2 ,. . ., b̂∗n, are predicted b* values, and b∗1 , b∗2 ,. . . b∗n are actual b* values.
n is the number of samples.

RMSE =

√√√√ n

∑
i=1

(ŷ∗i − y∗i )
2

n
(6)

ŷ∗1 , ŷ∗2 ,. . ., ŷ∗n, are predicted values, and y∗1 , y∗2 ,. . . y∗n are actual values.
n is the number of samples.

5. Results
5.1. Performance of Machine Learning Model

Table 10 displays the aggregated dE of each model at a sample size of 83 and a test
sample size of 9. Both Bagging with Decision Tree Regression and Random Forest exhibit
the lowest aggregated dE values of 10.84 and 10.75, respectively. In contrast, the Deep
Neural Network demonstrates a higher aggregated dE, indicating overfitting caused by the
limited sample size. Multiple Linear Regression also exhibits a high aggregated dE due
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to its inability to capture complex, nonlinear relationships that are present in the dataset,
limiting its predictive accuracy.

Table 10. Table of machine learning model and its aggregated dE values.

Model Aggregated dE

Bagging Regression with Decision Tree
Regression 10.84

Deep Neural Networks 22.90
Multiple Linear Regression 25.39

Random Forest 10.75

In summary, Bagging with Decision Tree Regression and Random Forest Regression
exhibit the lowest aggregated dE values. However, the observed color difference remains
too high for practical production use. The impact of the sample size on reducing the color
difference will be explored in the next section to assess the feasibility of achieving more
satisfactory results.

5.2. Impact of Sample Size on Machine Learning Accuracy

To understand the effect of the sample size on model accuracy, a systematic analysis
of how increasing sample sizes influence the aggregated dE for various models that are
referenced in this paper was conducted. Each model architecture was trained and evaluated
using various sample sizes. These samples were obtained as random subsets of the total
training samples and selected without replacement, ensuring the uniqueness and variability
of each sample set. Figure 9 illustrates the aggregated dE plotted against the number of
samples for each model type.

In Figure 9a, a decline in the aggregated dE is observed for Bagging with Decision Tree
Regression as the sample size increases. This trend suggests enhanced predictive accuracy,
likely due to the model’s exposure to a broader range of feature variations within the larger
datasets.

Conversely, Figure 9b demonstrates a decrease in the aggregated dE for the Deep
Neural Network model up to a sample size of 45. Beyond this point, the aggregated dE
increases. There might be several explanations for this, but it is likely an overfitting issue,
as the model learns the noise of the additional data instead of capturing the underlying
patterns [24].

Figure 9c reveals an initial rise in the aggregated dE for Multiple Linear Regression
with increasing sample sizes, followed by a decrease after reaching 45 samples. This
pattern is consistent with findings in Knofczynski’s research, underscoring the necessity of
a minimum sample size for accurate predictions [25]. Smaller sample sizes might result in
misleading outcomes due to insufficient data representation.

Finally, Figure 9d shows that the Random Forest Regression exhibits a trend that is
akin to Bagging with Decision Tree Regression. The aggregated dE decreases as more
samples are introduced, which is expected given their common underlying mechanism
based on Decision Tree Regression.

These observations suggest that the Bagging with Decision Tree Regression and Ran-
dom Forest Regression provide the highest and most consistent returns (in terms of aggre-
gated dE) for a given increase in the dataset compared to other models.

Table 11 highlights the pros and cons of our study compared with previous studies.
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Table 11. Table of comparison of pros and cons between current and previous studies.

Machine
Learning Model

Bagging with Decision
Tree Regression Neural Networks Multiple Linear

Regression
Random Forest

Regression

Pros

Less probability of
overfitting [20]

Incorporated multi-task
learning, where learning
does not occur solely for

one task [11]

Fast calculation speed [14] Effective for learning with
limited samples [26]

Simple model [20]

Able to implicitly detect
complex nonlinear

relationships between
dependent and

independent variables [27]

Robust for learning with
strong data error [26]

Robust to the effect of
noisy data [28]

Feasible for nonlinear or
approximately linear

problems [26]

Cons

Uses significant
computational complexity

[29]

Unexplained behaviors of
the model [30]

Assumes data are
normally distributed,

homogenous in variance,
and independent of one

another [31]

Uses significant
computational resources,

as they require several
splitting and evaluations
of candidate splits [20]

Loss of simplicity
compared to a simple

decision tree [29]

The duration of training a
Neural Network is

unknown [30]

There are no equations
linking the variables with
the predicted variable [32]

Proneness to overfitting
[27]
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6. Conclusions

In this study, machine learning algorithms were developed to predict offline color data
using both inline color measurements during polymer melt compounding and offline color
measurements on injection-molded cuboid color chips. Four machine learning models,
namely, Bagging with Decision Tree Regression, Deep Neural Network, Multiple Linear
Regression, and Random Forest Regression, were employed with the input of measurement
data and material dosage.

Among these models, Bagging with Decision Tree Regression and Random Forest
Regression demonstrated notable effectiveness, achieving the lowest aggregated dE values
of 10.84 and 10.75. As the current aggregated dE values are somewhat high for production-
level application, further analysis of the effect of the sample on model prediction accuracy
is required. Bagging with Decision Tree Regression and Random Forest Regression show a
consistent reduction in aggregated dE values with an increasing sample size. This suggests
that the truth function for offline color is easily discoverable by increasing the training
sample size.

This methodology suggests a potentially more efficient approach to ensure color chip
conformity during production. As the model performance improves with the training
dataset size, the minimization of material and time wastage becomes more achievable.
Overall, the results indicate a promising avenue for integrating machine learning into color
quality control processes within the polymer manufacturing industry.
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Appendix A

Table A1. Dataset of inline and offline color readings.

Formulation Inline L* Inline a* Inline b* Offline L* Offline a* Offline b*

1 14.37 2.11 6.33 86.68 −0.49 8.87
2 24.74 0.45 5.72 83.06 −0.81 12.15
3 31.44 −0.06 6.43 84.94 −0.17 10.64
4 39.17 0.14 9.71 86.36 0.32 8.24
5 44.48 0.92 13.14 88.01 −0.54 6.13
6 48.25 1.98 16.38 90.95 −0.36 5.56
7 49.93 2.55 18.05 92.94 −0.44 5.23
8 50.57 2.73 18.69 94.06 −0.42 5.02
9 50.94 2.82 19.11 94.69 −0.43 4.58

10 48.46 1.33 12.74 75.55 −0.42 3.21
11 45.14 1.41 11.15 66.74 −0.4 1.29
12 41.25 1.44 9.80 59.63 −0.37 0.29
13 33.54 1.18 6.88 44.66 −0.17 −1.03
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Table A1. Cont.

Formulation Inline L* Inline a* Inline b* Offline L* Offline a* Offline b*

14 24.03 1.08 4.19 27.95 0.39 −0.44
15 18.00 1.80 5.10 26.48 0.38 0.07
16 14.40 1.96 5.25 70.81 −56.05 10.94
17 14.55 1.65 5.05 63.96 −68.34 16.37
18 14.73 1.05 4.82 52.7 −70.06 20.14
19 14.86 0.60 4.76 41.81 −53.38 15.94
20 14.96 0.29 4.71 32.2 −26.83 7.7
21 15.07 0.00 4.64 26.06 −5.42 0.62
22 15.14 −0.15 4.59 24.97 −1.18 −0.9
23 15.24 −0.27 4.63 24.87 −0.66 −1.19
24 15.78 1.98 6.40 24.84 1.09 3.15
25 15.88 1.98 6.35 23.97 0.4 1.98
26 15.19 1.96 6.19 23.98 0.4 1.97
27 15.20 1.98 6.24 24.03 0.4 1.94
28 15.26 1.99 6.26 24.03 0.4 1.95
29 15.29 2.01 6.33 24.11 0.4 1.91
30 15.70 2.05 6.53 24.12 0.41 1.94
31 15.44 2.14 6.60 23.96 0.4 2.01
32 16.27 2.13 6.41 81.44 −3.39 1.34
33 16.39 2.09 6.33 76.34 −6.06 −6.03
34 16.50 2.10 6.25 65.04 −10.42 −22.51
35 16.56 2.15 6.12 55.55 −10.49 −36.02
36 16.56 2.19 6.09 42.42 0.09 −50.14
37 16.59 2.21 6.04 34.15 16.07 −54.19
38 16.58 2.24 5.96 30.78 20.03 −50.65
39 16.60 2.29 5.88 27.16 19.01 −40.4
40 16.73 1.94 6.35 82.68 −10.3 79.52
41 17.65 1.19 8.44 82.12 −6.79 85.79
42 18.18 0.47 10.76 79.87 1.66 90.88
43 19.27 −0.59 14.36 76.68 11.56 90.26
44 20.13 −1.29 17.61 73.5 21.74 87.14
45 20.83 −1.69 21.01 70.14 30.64 82.29
46 21.54 −1.47 22.98 67.68 36.11 78.3
47 16.86 2.15 33.52 64.26 42.23 72.51
48 23.20 3.49 21.00 82.69 −5.13 61.86
49 26.16 3.96 35.05 80.77 −1.15 69.22
50 24.52 5.51 40.48 76.42 9.22 76.01
51 22.49 7.12 43.69 72.3 17.24 75.34
52 17.75 2.92 38.77 39.12 −3.05 21.52
53 14.72 1.65 34.56 26 0.69 3.3
54 16.86 2.15 33.52 25.08 0.54 1.71
55 44.78 −0.56 7.72 75.89 −5.33 −6.27
56 43.13 −1.17 5.29 71.97 −6.19 −12.14
57 38.48 −2.03 −0.71 60.6 −5.24 −26.93
58 33.61 −2.12 −6.24 52.94 −1.99 −35.12
59 26.99 −0.62 −0.80 38.43 −2.25 −8.83
60 19.75 1.17 1.70 23.98 0.68 −0.97
61 15.50 1.88 4.61 23.62 0.65 0.53
62 24.01 −7.16 9.50 67.86 −39.25 3.2
63 24.80 −8.09 9.88 62.57 −44.73 8.02
64 22.68 −6.96 9.21 50.62 −46.06 5.83
65 20.43 −5.85 8.68 43 −39.76 6.06
66 16.84 −4.22 8.02 34.84 −18.75 2.12
67 16.12 −2.08 7.01 24.68 −0.58 1.04
68 18.07 1.02 6.25 24.95 −1.37 0.83
69 14.63 3.75 7.24 61.4 63.16 −6.31
70 14.82 4.31 7.53 55.5 71.35 1.46
71 15.03 4.80 7.92 51.42 69.84 17.81
72 15.18 5.22 8.17 48.08 65.4 31.76
73 15.28 5.61 8.39 44.86 61.18 36.52
74 15.40 5.88 8.53 41.3 56.05 33.22
75 15.45 6.02 8.58 39.12 52.5 29.7
76 15.11 6.08 8.48 36.6 47.55 25.41
77 38.76 26.41 5.81 65.73 51.64 3.92
78 35.32 31.16 4.25 61.39 58.12 6.59
79 27.58 33.64 3.26 53.28 62.67 14.54
80 23.15 29.58 4.38 49.94 61.27 17.73
81 19.75 18.42 3.11 34.64 25.15 4.53
82 16.01 7.91 5.62 28.04 10.24 8.2
83 15.10 5.79 6.90 27.16 7.41 7.06
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